COLOIDES

1. CONCEPTO GENERAL DE COLOIDES Y CRISTALOIDES

01a.jpg
Thomas Graham (1805-1869)

En el año 1861 Thomas Graham, estudiando la difusión de las sustancias disueltas, distinguió dos clases de solutos a los que denomino cristaloides y coloides.

En el grupo de cristaloides ubicó a los que se difunden rápidamente en el agua, dializan fácilmente a través de las membranas permeables y, al ser evaporadas las soluciones de que forman parte, quedan como residuo cristalino.

En el grupo de los coloides situó a los que se difunden lentamente, dializan con mucha dificultad o bien no lo hacen y, al ser evaporadas las soluciones de que forman parte, quedan como residuo gomoso.

El nombre coloide proviene del griego kolas que significa que puede pegarse. Esto nombre hace referencia a la propiedad que tienen los coloides a tender a formar coágulos de forma espontánea.

Esta forma de diferenciar los coloides de los cristaloides se mantuvo en uso durante muchos años, pero en la actualidad carece del valor de lo absoluto ya que algunas sustancias, aparentemente coloidales, se comportan como cristaloides y algunos cristaloides lo hacen como coloides, dependiendo de las condiciones determinantes del sistema. Por ejemplo la albúmina del huevo, la cual es un coloide, se ha logrado obtener en forma cristalizada y el cloruro de sodio, un cristaloide, se comporta como coloide cuando se lo disuelve en benceno. En realidad lo que determina la ubicación de estas sustancias en un grupo aparte de los dispersoides es el grado de división en que se encuentra el soluto y, como la materia en la naturaleza se presenta en forma de partículas, cuyo tamaño varia desde el de las que son visibles macroscópicamente hasta el de las que son invisibles aún con el microscopio electrónico, para definir en su justo término las soluciones coloidales es necesario contemplar la totalidad de las propiedades que les caracterizan. Esto es, el tamaño de sus micelas, su estabilidad, efecto Tyndall, movimiento browniano, comportamiento eléctrico, adsorción y avidez por el medio dispersante.

2. ASPECTOS GENERALES DE LAS DISPERSIONES COLOIDALES


micelas_liposomas.jpg
misela
Las partículas que constituyen los solutos de las soluciones coloidales se denominan micelas. Su tamaño es superior al de las que forman las soluciones verdaderas e inferior al de las dispersiones droseras, y oscila entre 0,1 y 0,001m. Estos límites no deben ser considerados como absolutos, puesto que se los ha tomado sobre la base del poder resolutivo del mejor microscopio posible, usando luz azul para el caso de las partículas más grandes y del ultramicroscopio, para el de las más pequeñas. Por ello, no es de extrañar que las propiedades de la materia al estado coloidal sean comunes, en unos casos, con las de las dispersiones groseras y, en otros, con las de las soluciones verdaderas.

3. PURIFICACION DE LAS SOLUCIONES COLOIDALES


Para separar las micelas de las partículas que forman las dispersiones groseras, basta con usar un filtro común, cuidando de que el diámetro de sus poros permita el pasaje de las micelas y retenga las partículas. En cuanto al proceso de separación de las micelas de las partículas cristaloides que puedan hallarse en una misma solución, exige valerse de unos filtros especiales, llamados ultrafiltros, o bien de las diálisis. En el primer caso se hace pasar la solución a través de una hoja de papel pergamino o de una membrana de colodio, cuyos poros, de muy escaso diámetro, retienen las micelas de tamaño mayor que ellos y dejan pasar las partículas cristaloides y las del solvente. Con respecto al segundo método (diálisis), se basa en la propiedad que tienen los cristaloides de atravesar fácilmente las membranas permeables.

4. ESTABILIDAD DE LAS DISPERSIONES COLOIDALES


El gran tamaño de las micelas haría suponer que la estabilidad de las soluciones coloidales es precaria y, por acción de la gravedad, terminarían por precipitar, con la consiguiente separación de sus dos fases. Sin embargo no es así y, por el contrario, las soluciones coloidales tienen, por lo general, una gran estabilidad, tal como será explicado más adelante, y con mayores detalles, al tratar del estudio de loa coloides liófobos y liófilos en particular.

5. FORMAS EN QUE SE PRESENTAN EL ESTADO COLOIDAL


Las soluciones coloidales son sistemas heterogéneos polifásicos, pues contienen al menos dos fases distintas: la dispersa, finamente dividida, y la dispersante. En general, cuando las dispersiones coloidales se encuentran en estado líquido se dice que forman un sol. Si tienen forma consistente poseyendo alguna de las propiedades elásticas o plásticas de los cuerpos sólidos, aunque el medio dispérsame sea líquido se dice que constituyen un gel.

El fenómeno de la gelificación puede ser reversible o irreversible. En el primer caso las micelas, una vez separadas del disolvente, pueden ser llevadas nuevamente a su condición de sol, sea por un simple contacto con el medio dispersante o bien con otra sustancia, distinta de éste, en cuyo caso se dice que el coloide es reversible por peptización. Por el contrario, si el gel no puede ser disuelto nuevamente es que ha gelificado en forma irreversible, proceso denominado coagulación y caracterizado por que en él, las micelas se reúnen formando flóculos grandes tal como sucede con la sangre quo contiene coloides circulando en solución (es un sol) pero, en determinadas condiciones y mediante un mecanismo algo complicado, se transforma en un gel irreversible, es decir coagula.

6. CLASIFICACION DE LAS DISPERSIONES COLOIDALES


Las soluciones coloidales se clasifican de acuerdo con el estado de agregación en que se presentan el soluto y el solvente y, corno los estados de la materia son tres, de sus posibles combinaciones se podrían obtener 9 tipos de soluciones coloidales. Si no fuera porque la novena posibilidad (de gas en gas) es imposible de realizar por cuanto los gases no pueden existir uno junto a otro sin mezclarse. Por ello los tipos de dispersiones coloidales son ocho y se resumen en el cuadro.


fase dispersa
fase dispersante
ejemplo
solido
solido
Aleaciones, piedraspreciosas coloreadas
solido
liquido
Suspensiones de almidón, pinturas, tinta
gas
gas
Humo

liquido
solido
Jaleas, queso
liquido
liquido
Emulsiones, mayonesa
liquido
gas
Nubes, niebla
gas
solido
Lava, piedra pómez
gas
liquido
Espumas, nata batida

7. TIPOS DE COLOIDES


De los distintos tipos de coloides mencionados, los más importantes son:



7.1. Emulsiones


Se llama emulsión a una dispersión coloidal de un líquido en otro inmiscible con él, y puede prepararse agitando una mezcla de los dos líquidos ó, preferentemente, pasando la muestra por un molino coloidal llamado homogeneizador. Tales emulsiones no suelen ser estables y tienen a asentarse en reposo, para impedirlo, durante su preparación se añaden pequeñas cantidades de sustancias llamadas agentes emulsificantes ó emulsionantes, que sirven para estabilizarlo. Estas son generalmente jabones de varias clases, sulfatos y ácidos sulfúricos de cadena larga o coloides liófilos.


7.2. Soles


Las soluciones coloidales con un medio de dispersión líquido se dividen en dos clases: soles liófobos (que repelen los líquidos), y soles liófilos (que atraen a los líquidos). Si el agua es el medio, se emplean los términos hidrófobo ó hidrófilo. Los soles liófobos son relativamente inestables (o metaestables); a menudo basta una pequeña cantidad de electrólito ó una elevación de la temperatura para producir la coagulación y la precipitación de las partículas dispersadas. Los liófilos tienen una estabilidad considerable. Al evaporar un sistema liófobo, se obtiene un sólido que no puede convertirse de nuevo en sol por adición del disolvente; pero los soles liófilos siguen siendo en esencia sistemas moleculares dispersados, son reversibles en este respecto. Son ejemplos típicos de soles liófobos los de metales, azufre, sulfuros metálicos y otras sales. Los soles de gomas, almidones, proteínas y muchos polímeros sintéticos elevados son de índice liófila.

No es posible trazar una línea de separación entre los soles liófilos y liófobos, así por ejemplo, las soluciones coloidales de varios hidróxidos metálicos y sílice hidratada (sólidos de ácido sílico) poseen propiedades intermedias. En esos casos, la fase dispersa tiene probablemente una estructura molecular análoga a la de un polímero elevado.

De algunos soles liófilos o liófobos puede obtenerse un gel, sistema que tiene ciertas propiedades elásticas o incluso rígidos.


7.3. Aerosoles


Los aerosoles fueron definidos antes como sistemas coloidales que consistían en las partículas líquidas o sólidas muy finalmente subdivididas dispersadas en un gas. Hoy el aerosol del término, en uso general, ha llegado a ser sinónimo con un paquete presurizado.

Los aerosoles de Superficie capa producen un aerosol grueso o mojado y se utilizan cubrir superficies con una película residual. Los propulsores usados en aerosoles están de dos tipos principales: gases licuados y gases comprimidos. Lo anterior consisten en fácilmente los gases licuados tales como hidrocarburos halogenos. Cuando éstos se sellan en el envase, el sistema se separa en un líquido y una fase del vapor y pronto alcanza un equilibrio. La presión del vapor empuja la fase líquida encima de la columna de alimentación y contra la válvula. Cuando la válvula es abierta apretando, la fase líquida se expele en el aire en la presión atmosférica y se vaporiza inmediatamente. La presión dentro del envase se mantiene en un valor constante mientras que más líquido cambia en el vapor. Los aerosoles farmacéuticos incluyen soluciones, suspensiones, emulsiones, polvos, y preparaciones semisolidas.


7.4. Geles


7.4.1. Formación de los geles (gelación)


Cuando se enfrían algunos soles liófilos por ejemplo, gelatinas, pectinas, o una solución medianamente concentrada de jabón o cuando se agregan electrólitos, en condiciones adecuadas, a ciertos soles liófobos, por ejemplo: óxido férrico hidratado, óxido alumínico hidratado ó sílice, todo el sistema se cuaja formando una jalea aparentemente homogénea que recibe el nombre de gel. Se forman geles cuando se intentan preparar soluciones relativamente concentradas de grandes polímeros lineales. La formación de los geles se llama gelación . En general, la transición de sol a gel es un proceso gradual. Por supuesto, la gelación va acompañada por un aumento de viscosidad , que no es repentino sino gradual.

7.4.2. Tipos de Geles.

Hay geles de muchos tipos y no es posible una clasificación sencilla. En general, se dividen en: elásticos o no elásticos ó rígidos. En realidad, todos los geles poseen elasticidad apreciable, y la división citada se refiere más particularmente a la propiedad del producto obtenido cuando se seca el gel. La deshidratación parcial de un gel elástico, como un gel de gelatina, conduce a la formación de un sólido elástico, por medio del cual puede regenerarse el sol original añadiéndole el disolvente éstos sólidos secos o semisecos se llaman xerogeles .

Los precipitados gelatinosos de los óxidos metálicos hidratados no tienen en realidad una estructura diferente de la de los geles no elásticos correspondientes. La diferencia esencial es en que éstos tienen todo el liquido de dispersión incluido en la estructura semisólida, lo cual no ocurre en el precipitado gelatinoso. Si las condiciones son tales que las partículas coloidales se juntan lentamente, es posible que se forme un gel, pero la coagulación rápida irá acompañada por la formación de un precipitado.

Se ha propuesto otra clasificación de los geles basados en el efecto del calor. Si el cambio producido calentando es invertido por enfriamiento se dice que el gel es térmicamente reversible; en el caso contrario, el gel es térmicamente irreversible. Pertenecen al primer grupo la nitrocelulosa en diversos líquidos orgánicos y la gelatina en agua; en el segundo están los sistemas albúmina de huevo y sílice hidratada en agua. La diferencia entre los dos tipos se debe indudablemente a cambios químicos, como la formación del enlace de hidrogeno que se produce cuando se calientan geles térmicamente irreversibles.